Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Ethyl-1H-imidazole-4-carboxylate monohydrate

Shi-Jie Li, ${ }^{a}$ Juan-Hua Liu, ${ }^{\text {a }}$ Wen-Dong Song, ${ }^{\text {b }}$ * Xiao-Fei Li ${ }^{\text {c }}$ and Dong-Liang Miao ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, ${ }^{\text {b }}$ College of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and 'College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
Correspondence e-mail: songwd60@163.com
Received 9 March 2011; accepted 23 March 2011
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.038 ; w R$ factor $=0.106 ;$ data-to-parameter ratio $=11.7$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, the imidazole N atom is protonated and one of the carboxylate groups is deprontonated, forming a zwitterion. The two carboxyl groups are are approximately coplanar with the imidazole ring $[\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles $=-176.8(2)$ and $2.9(4)^{\circ}$ for one group and $-4.6(3)$ and $176.4(2)^{\circ}$ for the other] and have an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between them. The water molecule is linked to the organic molecules via an $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are found in the crystal structure.

Related literature

For our past work based on the 2-propyl-1H-imidazole-4,5carboxylate (H_{3} pimda) ligand, see: Yan et al. (2010); Li et al. (2010); Song et al. (2010); He et al. (2010); Fan et al. (2010). For related coordination polymers based on H_{3} EIDC (2-ethyl-1H-imidazole-4,5-dicarboxylate), see: Wang et al. (2008); Zhang et al. (2010); Li et al. (2011). For the synthesis of H_{3} EIDC, see: Sun et al. (2006).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=202.17$
Monoclinic, $P 2_{1} / c$
$a=7.6132$ (6) A
$b=14.3779$ (16) \AA
$c=7.9396$ (8) A
$\beta=97.799(1)^{\circ}$
$V=861.04(15) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.50 \times 0.41 \times 0.40 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.936, T_{\text {max }}=0.948$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 \quad 3$ restraints
$w R\left(F^{2}\right)=0.106$
$S=1.05$
1510 reflections
129 parameters

H -atom parameters constrained
4224 measured reflections 1510 independent reflections 1166 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$
$\Delta \rho_{\max }=0.28 \mathrm{e}_{\mathrm{A}} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	1.91	2.754 (2)	168
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.86	1.89	2.751 (2)	177
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.82	1.63	2.452 (2)	176
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.85	2.05	2.8863 (19)	169
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 1$	0.85	2.03	2.849 (2)	163
Symmetry codes: $-x+2,-y+1,-z$	$\begin{equation*} -x+1, y+\frac{1}{2},-z+\frac{1}{2} \tag{iii} \end{equation*}$ (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$;			

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Ocean Fisheries Technology Promotion Project [grant No. A2009003-018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011-007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002).

[^0]
organic compounds

References

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. \& Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.
He, L.-Z., Li, S.-J., Song, W.-D. \& Miao, D.-L. (2010). Acta Cryst. E66, m896. Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. \& Liu, J.-H. (2011). Acta Cryst. E67, m295-m296.
Li, S.-J., Yan, J.-B., Song, W.-D., Wang, H. \& Miao, D.-L. (2010). Acta Cryst. E66, m280.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. \& Li, X.-F. (2010). Acta Cryst. E66, m53.
Sun, T., Ma, J.-P., Huang, R.-Q. \& Dong, Y.-B. (2006). Acta Cryst. E62, o2751o2752.
Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. \& Liu, Y. L. (2008). CrystEngComm 10, 1662-1666.
Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. \& Miao, D.-L. (2010). Acta Cryst. E66, m99.
Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. \& Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776-3788.

supplementary materials

2-Ethyl-1H-imidazole-4-carboxylate monohydrate

S.-J. Li, J.-H. Liu, W.-D. Song, X.-F. Li and D.-L. Miao

Comment

4,5-imidazoledicarboxylic acid $\left(\mathrm{H}_{3} \mathrm{IDC}\right)$ ligand posesses great potential for coordination interactions and hydrogen bonding, can be deprotonated to generate $\mathrm{H}_{2} \mathrm{IDC}^{-}, \mathrm{HIDC}_{2}{ }^{-}$and $\mathrm{IDC}_{3}{ }^{-}$anions at different pH values. Up to date, it has been widely studied. 2-propyl-1H-imidazole-4,5-carboxylate (H_{3} pimda) ligand as one derivative of $\mathrm{H}_{3} \mathrm{IDC}$ with efficient N, O-donors has been used to obtain new metal-organic complexes by our research group(Song et al., 2010; Yan et al., 2010; He et al. 2010; Fan et al. 2010; Li et al. 2010). Recently, an analogue of H_{3} IDC, 2-ethyl-1H-imidazole-4,5-dicarboxylate ($\left.\mathrm{H}_{3} \mathrm{EIDC}\right)$ ligand has also been used to construct intriguing coordination polymers (Wang et al., 2008; Zhang et al. , 2010; Li et al., 2011;). However, the crystal structure of H_{3} EIDC ligand has not been determined. Considering that in mind, we focus on obtaining the crystal and its crystal structure will be reported here.

As illustrated in Fig. 1, the title compound, $\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes as a zwitterion in which the imidazole N atom is protonated, one of the carboxylate groups is deprontonated. The two carboxyl groups are approximately coplanar with the imidazole ring, as indicated by the fact that the $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angles are $-176.8(2)^{\circ}$ and $2.9(4)^{\circ}$, respectively; the $\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ and $\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ torsion angles are $-4.6(3)^{\circ}$ and $176.4(2)^{\circ}$, respectively. The solvent water molecules are linked to the organic ligands via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds(Table 1), which stabilize the three-dimensional network(Fig. 2).

Experimental

The organic molecule powder was abtained from 2-ethylbenzimidazole according to a literature procedure (Sun et al. 2006), then the 2-ethyl-1H-imidazole-4,5-dicarboxylate $(0.5 \mathrm{mmol}, 0.9 \mathrm{~g})$ was disolved in $15 \mathrm{ml}^{\text {of }} \mathrm{H}_{2} \mathrm{O}$ solution with the pH of 6 adjusted by NaOH , colorless crystals was obtained by slow evaporation of the solvent at room temperature.

Refinement

H atoms of the water molecule were located in a difference Fourier map and refined as riding with an $\mathrm{O}-\mathrm{H}$ distance restraint of 0.84 (1) \AA, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq. }}$. The $\mathrm{H} \cdots \mathrm{H}$ distances within the water molecules were restraint to 1.39 (1) \AA. Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with with $\mathrm{O}-\mathrm{H}=0.82 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with $\mathrm{C}-\mathrm{H}=0.96$ (methyl), 0.97 (methylene) and $\mathrm{N}-\mathrm{H}=0.86 \AA, U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

supplementary materials

Figures

Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Fig. 2. A view of the three-dimensional network constructed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions

2-Ethyl-1H-imidazole-4-carboxylate monohydrate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=202.17$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.6132$ (6) \AA
$b=14.3779(16) \AA$
$c=7.9396(8) \AA$
$\beta=97.799(1)^{\circ}$
$V=861.04(15) \AA^{3}$
$Z=4$
$F(000)=424$
$D_{\mathrm{x}}=1.560 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1702 reflections
$\theta=2.5-25.9^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.50 \times 0.41 \times 0.40 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\text {min }}=0.936, T_{\text {max }}=0.948$
4224 measured reflections

1510 independent reflections
1166 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-9 \rightarrow 8$
$k=-17 \rightarrow 13$
$l=-9 \rightarrow 7$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
1510 reflections
129 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.047 P)^{2}+0.3916 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.060 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.4705(2)$	$0.42162(11)$	$0.2301(2)$	$0.0314(4)$
H1	0.4860	0.4805	0.2208	0.038^{*}
N2	$0.3607(2)$	$0.29056(11)$	$0.2927(2)$	$0.0305(4)$
H2	0.2932	0.2499	0.3308	0.037^{*}
O1	$0.7740(2)$	$0.46097(10)$	$0.0811(2)$	$0.0517(5)$
O2	$0.8238(2)$	$0.31103(10)$	$0.0434(2)$	$0.0457(5)$
H2A	0.7770	0.2619	0.0653	0.069^{*}
O3	$0.6974(2)$	$0.16119(9)$	$0.1124(2)$	$0.0433(4)$
O4	$0.4800(2)$	$0.11124(9)$	$0.2502(2)$	$0.0436(4)$
O1W	$0.8455(2)$	$0.65550(10)$	$0.0862(2)$	$0.0501(5)$
H1W	0.9476	0.6582	0.0543	0.075^{*}
H2W	0.8189	0.5995	0.1057	0.075^{*}
C1	$0.7364(3)$	$0.37964(14)$	$0.0950(3)$	$0.0356(5)$
C2	$0.5789(3)$	$0.35434(13)$	$0.1777(2)$	$0.0295(5)$
C3	$0.5090(3)$	$0.27125(13)$	$0.2173(2)$	$0.0282(5)$
C4	$0.5648(3)$	$0.17372(13)$	$0.1935(3)$	$0.0314(5)$

C5	$0.3383(3)$	$0.38238(13)$	$0.2972(3)$	$0.0310(5)$
C6	$0.1908(3)$	$0.43371(15)$	$0.3579(3)$	$0.0466(6)$
H6A	0.1212	0.4632	0.2610	0.056^{*}
H6B	0.2403	0.4827	0.4340	0.056^{*}
C7	$0.0694(3)$	$0.37559(17)$	$0.4485(3)$	$0.0528(7)$
H7A	0.0221	0.3257	0.3758	0.079^{*}
H7B	-0.0259	0.4135	0.4773	0.079^{*}
H7C	0.1345	0.3504	0.5503	0.079^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0332(9)$	$0.0177(8)$	$0.0455(11)$	$0.0005(7)$	$0.0140(8)$	$0.0015(7)$
N2	$0.0316(9)$	$0.0200(8)$	$0.0425(10)$	$-0.0005(6)$	$0.0145(8)$	$0.0011(7)$
O1	$0.0503(10)$	$0.0288(9)$	$0.0821(13)$	$-0.0062(7)$	$0.0310(9)$	$0.0027(8)$
O2	$0.0437(9)$	$0.0295(8)$	$0.0707(11)$	$0.0011(7)$	$0.0321(8)$	$0.0009(7)$
O3	$0.0479(9)$	$0.0275(8)$	$0.0601(10)$	$0.0068(6)$	$0.0272(8)$	$-0.0009(7)$
O4	$0.0460(9)$	$0.0202(7)$	$0.0690(11)$	$0.0006(6)$	$0.0236(8)$	$0.0029(7)$
O1W	$0.0479(10)$	$0.0283(8)$	$0.0813(12)$	$-0.0006(7)$	$0.0344(9)$	$-0.0023(8)$
C1	$0.0344(11)$	$0.0281(11)$	$0.0466(13)$	$0.0005(9)$	$0.0137(10)$	$0.0017(9)$
C2	$0.0306(11)$	$0.0234(10)$	$0.0355(11)$	$0.0029(8)$	$0.0087(9)$	$-0.0001(8)$
C3	$0.0296(10)$	$0.0222(10)$	$0.0340(11)$	$0.0015(8)$	$0.0090(9)$	$-0.0005(8)$
C4	$0.0337(11)$	$0.0227(10)$	$0.0389(12)$	$0.0023(8)$	$0.0092(9)$	$-0.0002(9)$
C5	$0.0313(11)$	$0.0222(10)$	$0.0414(12)$	$0.0011(8)$	$0.0124(9)$	$0.0005(9)$
C6	$0.0433(13)$	$0.0273(12)$	$0.0751(17)$	$0.0048(9)$	$0.0295(13)$	$-0.0017(11)$
C7	$0.0468(14)$	$0.0451(14)$	$0.0734(17)$	$0.0080(11)$	$0.0334(13)$	$0.0037(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 5$	$1.327(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.372(2)$
$\mathrm{N} 1-\mathrm{H} 1$	0.8600
$\mathrm{~N} 2-\mathrm{C} 5$	$1.332(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.376(2)$
$\mathrm{N} 2-\mathrm{H} 2$	0.8600
$\mathrm{O} 1-\mathrm{C} 1$	$1.212(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.288(2)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200
$\mathrm{O} 3-\mathrm{C} 4$	$1.281(2)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.227(2)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	0.8500
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$110.02(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1$	125.0
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	125.0
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3$	$109.11(15)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2$	125.4
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	125.4
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.5

$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$	0.8501
$\mathrm{C} 1-\mathrm{C} 2$	$1.488(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.362(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.485(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.478(3)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.500(3)$
$\mathrm{C} 6-\mathrm{H} 6 A$	0.9700
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	$118.07(17)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$117.11(17)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$107.67(16)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$124.74(17)$
N2-C5-C6	$127.55(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$115.01(18)$
C5-C6-H6A	108.5

sup-4

supplementary materials

$\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1-\mathrm{H} 2 \mathrm{~W}$	110.3	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	108.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$124.86(19)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	108.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.35(18)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	108.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$115.80(17)$	$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	107.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$106.15(16)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$132.84(18)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.01(17)$	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$107.05(16)$	$\mathrm{C} 6-\mathrm{C}-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$132.14(17)$	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.81(17)$	$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 3$	$124.82(17)$		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.7(2)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.30(18)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$179.02(18)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$176.4(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-176.8(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$-3.4(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$2.9(4)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4-\mathrm{O} 3$	$-4.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$3.5(3)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{N} 2$	$175.56(18)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-176.74(19)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$1.3(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$-0.1(2)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 5-\mathrm{N} 1$	$-176.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 5-\mathrm{C} 6$	$-1.3(2)$	
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{~N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$176.2(2)$	
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.9(2)$	$-172.7(2)$	
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$0.4(4)$	$10.2(4)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.91	$2.754(2)$	168
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1 W^{\mathrm{ii}}$	0.86	1.89	$2.751(2)$	177
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 3$	0.82	1.63	$2.452(2)$	176
$\mathrm{O}^{\mathrm{i} W}-\mathrm{H} 1 \mathrm{~W} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.85	2.05	$2.8863(19)$	169
O1W—H2W $\cdots \mathrm{O} 1$	0.85	2.03	$2.849(2)$	163

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $-x+2,-y+1,-z$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2272).

